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Abstract

A sophisticated Raman lidar numefical model has
been developed. The model has been used to simu-
late the performance of two ground-based Raman wa-
ter vapor lidar systems. After tuning the model us-
ing these ground-based measurements, the model is
used to simulate the water vapor measurement capa-
bilty of an airborne Raman lidar under both day- and
night-time conditions for a wide range of water vapor
conditions. The results indicate that, under many cir-
cumstances, the daytime measurements possess com-
parable resolution to an existing airborne differential
absorption water vapor lidar while the nighttime mea-

surements have higher resolution. In addition, a Raman



lidar is capable of measurements not possible using a

differential absorption system.

{8}



1 Introduction

The Raman lidar technique has long been considered to be one of the finest techniques for ground-
based monitoring of the nighttime evolution of atmospheric properties. Raman lidar studies which
have been performed include the water vapor dynamics of frontal passages [10], aerosol growth
and its relation to relative humidity [5], upper tropospheric and stratospheric temperature structure

[4] and cloud droplet radius and number density retrievals [15].

Recently an automated Raman lidar [6] capable of daytime and nighttime measurements of wa-
ter vapor and aerosols has been developed under the Department of Energy (DOE) Atmospheric
Radiation Measurements (ARM) Program [12]. Despite the great success of Raman lidar technol-
ogy from ground-based platforms, there has been very limited use of Raman lidars from aircraft.

To date only nighttime, up-looking airborne Raman lidar measurements have been made [7] [3].

As a part of the National Aeronautics and Space Administration (NASA) Instrument Incu-
bator Program, we have investigated the design and performance of an airborne Raman lidar
which would be capable of a broad range of high priority scientific measurements for use in
such aircraft as the NASA DC-8. These measurements include water vapor and aerosol scatter-
ing/extinction/depolarization (day and night) and cloud liquid water and rotational Raman temper-
ature (night).

Perhaps the most important of these proposed measurements is that of water vapor. Because
of this, we have chosen to focus on the anticipated water vapor measurement capability of an
airborne Raman lidar by performing detailed numerical simulations. A numerical Raman lidar

model was constructed and used to study the anticipated measurements of this new system for

~
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water vapor conditions ranging from sub-tropical to arctic. These results demonstrate that a sig-
nificant performance increase is realized by operating a Raman lidar looking downward from an
aircraft compared to that same system looking upward from the ground. This improvement makes
an airborne Raman lidar a very attractive airborne research tool for both daytime and nighttime

conditions.

In the next section, the model will be described. This description includes a comparison of
the model’s calculation of the lidar overlap function [9] with ray tracing results. A sequential

description of how the model is used to simulate lidar measurements is then given.

In section 3, the model is tuned to match the performance of two ground-based Raman lidar
systems which use wide field of view and narrow field of view optical systems, respectively. Water
vapor and nitrogen signals are simulated for each system. These simulated signals are then pro-
cessed to yield a simulated profile of water vapor mixing ratio which is then compared to actual

measurements.

The technical specifications for the airborne Raman lidar to be modeled are given in section
4. This lidar is based on a 0.6 m telescope. The performance of this system is studied for three

different water vapor conditions ranging from sub-tropical to arctic.

In section 5, the candidate aircraft that have been surveyed are described. This aircraft survey
indicates that for some measurement scenarios, the available viewport size is limited to 0.4 m.
Simulations are performed of both down-looking and up-looking measurements using a 0.4 m

telescope.



2 The model

A sophisticated Raman lidar modcl has been developed using the Mathematica programming lan-
guage. The standard single scattering Raman lidar equation (equation 7.64 from reference [9]) has
been used. In the evaluation of this equation, it is necessary to quantify the lidar system overlap
function. The lidar overlap function describes the fraction of light that is transmitted through the
lidar optical system as a function of range due to geometrical and optical effects. The overlap
function results partly from the fact that the laser beam may not be fully in the field of view of the
telescope for close ranges. The other major component of the overlap function results from the
fact that objects at different distances in the telescope’s object field are focussed at different points

in the telescope’s image field.

The model is used to simulate the measurement performance of an individual lidar detector
channel. In the simulations done here, only water vapor and nitrogen Raman signals have been
simulated although Rayleigh-Mie signals are also possible. The sequence of using the model to
best simulate the measurement of an actual lidar system is as follows.

1) The lidar system overlap function is calculated using the following inputs: telescope primary
diameter, telescope secondary diameter, telescope field of view, telescope F/number, telescope
blur circle, laser divergence, initial laser beam diameter, and telescope focus range. In addition, a
Gaussian laser beam profile can be specified. The shape of the Gaussian function can be adjusted
to best fit the overlap behavior of the actual data. Only co-axial geometries are presently handled.

2) With the overlap function (uantified, the single scattering lidar equation is evaluated as a

function of range. This yields a simulation of the lidar system’s measurement of water vapor or
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nitrogen. The following input inlormation is required: laser pulse energy, laser repetition rate,
laser wavelength, Raman return wavelength, round trip attenuation due to molecular transmission
and aerosol extinction, water vapor or nitrogen density profile (usually obtained from a coincident
radiosonde launch), Raman scattering cross section, zenith angle. averaging time, data acquisition
bin time, spectral width of the interference filter, filter transmission, photomultiplier tube quantum
efficiency, photon counting bandwidth (if photon counting is to be simulated) and photomultiplier
dark count rate (a value of 100 sec™! was used for these simulations). All of these parameters are
known for the system that is being simulated. Two more parameters are required as input to the
model that are not necessarily known: irradiance of the background scene and the lidar channel
optical efficiency (which accounts for the transmission efficiency of the optical components that
have not already been specified such as collimating optics and beamsplitters). Reasonable values

for these parameters are chosen at this point to generate an initial profile.

3) The simulated profile which results from step 2 is compared to the actual profile generated by
the lidar. The model inputs for lidar channel optical efficiency and the background irradiance are
then adjusted and another profile is generated. This process is repeated until the best match between
the model output and real data is obtained. This process is referred to as “tuning” and results in
values of background scene irradiance during the actual lidar measurement and the efficiency of

the optical system.

2.1 Overlap function

As a demonstration of the model’s ability to simulate lidar system overlap functions the following

test case was studied using both the numerical Raman model and the commercially available opti-
6



Raman Model

ZeMax
1 S — ——
-2 Infinity H —\— Infinity
! v - 03 | \
o8 ;o - 5000 ' 5000
: N\
T v i -
VR . — - 2000 — 2000
Fos : / F o6 /
S Lo A — 1000 Y - — 1000
© / © [
J: Lo f:
& 04 / / 304 Co /
;) IR
o/ ‘ f» .
ozf h 02 4 ~
L/ - , ~
// -
L >
1 152 3 5 7 10 15 1 152 3 6 7 10 15
Range (km) Range (km)
Figure 1: Comparison of the overlap function for a 0.6 m F/4 telescope using the ZeMax optical

ray trace program and the Raman lidar model for diffrerent telescope focus settings: 1 km, 2 km,

5 km and infinity. The two sets of overlap functions show good qualitative agreement.

cal ray tracing program ZeMax. The lidar system that was modeled used an F/4, 0.6 m diameter
telescope with a 0.15 m diameter secondary. For these simulations, an expanded laser beam of
100 mm diameter with divergence of 60 microradians. was used. The far field laser beam pattern
was assumed to be uniform. A coaxial arrangement of the outgoing laser beam and the telescope
optical axis was used. The results of this comparison for various telescope focus ranges are shown
in figure 1 .

The two approaches for simulating lidar system overlap show good qualitative agreement. Since
the model will be tuned to match actual ground-based lidar data before being used to simulate the
performance of an airborne system, what one needs from a model is for it to give realistic behavior

when a particular parameter is varied. The Raman model demonstrates very good ability to account
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for variations in factors which influence the shape of the lidar system overlap function based on

the results shown in figure 1.

Another factor that influences the shape of the lidar return signal when a photon counting de-
tection system is used is photon pileup. Photon pileup is the term used to describe the probability
that two photons may arrive closely spaced enough in time to not be individually distringuishable.
In the model, this effect is simulated using a paralyzable assumption [13]. After the simulated pro-
files are created, the photon counting data are processed using a non-paralyzable assumption [13].
By using different mathematical expressions for photon pileup in these two stages of the modeling
process, non-linearities are introduced into the processed data as the count rate increases. This

simulates the difficulty of processing photon counting data that exhibit photon saturation effects.

3 Model tuning by comparison with ground-based data

3.1 Lidar systems to be modeled

The data from two different ground-based Raman lidar systems were used for model tuning and
validation. Those systems are the NASA/Goddard Space Flight Center Scanning Raman Lidar
(SRL) and the Department of Energy (DOE) Cloud and Radiation Testbed (CART) Raman Lidar.
After tuning the model to accurately simulate these ground-bascd systems, airborne simulations

under a wide range of water vapor conditions will be simulated.
3.1.1 Scanning Raman Lidar (SRL)

The NASA/GSFC Scanning Raman Lidar is housed in a single mobile trailer and contains two
8



lasers. For nighttime operations, a XcF excimer laser (331 nm) is used with output power of 12-24
W. For daytime measurenents, a frequency-tripled Nd:YAG (355 nm) is used with output power
of approximately 9 W.

Lidar measurements are made of the Rayleigh-Mie return at the laser wavelength as well as
Raman shifted returns due to atmospheric water vapor, nitrogen and oxygen. When using the
XeF excimer laser, the Raman shifted return wavelengths for water vapor, nitrogen and oxygen
are approximately 403, 382 and 371 nm, respectively. The corresponding wavelengths for the
Nd:YAG based measurements are approximately 408, 387 and 376 nm. All four of these signals
are collected by a 0.76 m, F/5.2, variable field-of-view (0.25 - 2.5 milliradians) Dall-Kirkham
telescope. The telescope is mounted horizontally and aligned with a large (1.2m x 0.8m) flat scan
mirror. The scan mirror enables 180 degree scanning in a single scan plane.

The telescope output is collimated and then split among eight photomultiplier tubes (PMT)
using dichroic beamsplitters and interference filters. There are two PMTs used to detect each
wavelength. One PMT receives a small portion of the signal intensity and is used for the low
altitude returns below approximately 4 km while the second PMT receives the remainder of the
signal and is used for the high altitude returns above approximately 3 km. These PMTs are referred

to as low and high channels, respectively. A more complete description of the SRL can be found

in reference [15].

3.1.2 CART Raman Lidar (CARL)

The CART Raman Lidar was developed as a part of the DOE Atmospheric Radiation Measure-

ments (ARM) Program and has been operational at the northern Oklahoma Cloud and Radiation
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Testbed (CART) site since 1997. It uses a 0.6 m, F/9 telescope, 12 W Nd:'YAG laser and is vertical
pointing only. It is an automated system designed for 24-hour unattended operation. It makes all of
its measurements using a narrow-band, narrow field of view detection technique. In addition to the
measurements made by the SRL, it also measures aerosol depolarization. In a similar fashion to the
SRL, CARL uses two photomultipliers for each wavelength. Thus, there is in general a high and
low channel for each of the signals. Neutral density filters are used in the water vapor and nitrogen
channels to decrease the count rates under some conditions in order to limit the effects of photon
pileup correction [13]. The water vapor signal intensity is reduced by a factor of approximately
10 for daytime measurements while the nitrogen signal is reduced by a factor of approximately 20
under all conditions. A complete description of this system can be found in Goldsmith et. al. [6].
Only the high channel signals for both the SRL and CARL will be simulated here since, as will
be shown, an airborne Raman lidar is capable of making measurements from 10 km to the surface

with just a single channel.

3.2 Case study 1: Scanning Raman Lidar data (wide field of view)

The model will first be used to best simulate data acquired by the SRL during the third Convection
and Moisture Experiment (CAMEX3) which occurred in August -September, 1998. The goal of
CAMEX-3 was to better understand the genesis and tracking of hurricanes by acquiring a compre-
hensive set of measurements of both the hurricane developmental environment and the hurricane
itself. Measurements were acquired both from airborne and ground-based platforms as a part of
this field experiment.

The SRL was situated on Andros Island in the Bahamas as a part of the calibration/validation fa-
10



cility for the CAMEX-3 campaign. In addition to the SRL, this ground site included the University
of Wisconsin Advanced Emitted Radiance Interferometer (AERI), radiosonde launch systems pro-
vided by both NASA/GSFC Wallops Flight Facility and the University of Wisconsin, Global Po-
sitioning System measurements of column water vapor, sun photometer measurements of aerosols
and water vapor and standard surface sensor measurements of temperature, pressure and relative

humidity [16].

During the course of the nearly two-month deployment on Andros Island, the water vapor and
aerosol environment associated with the nearby passage of hurricanes Bonnie, Danielle, Earl and
Georges was measured. On the night of August 22, 1998 during the passage of hurricane Bonnie,
one of the several calibration/validation overflights of Andros Island by the NASA DC-8 aircraft
occurred. On board the DC-8 for this experiment was the NASA/Langley Research Center (LaRC)
differential absorption LASE (Lidar Atmospheric Sensing Experiment) water vapor lidar system.
This overflight provided an opportunity to compare the ground based water vapor measurements

of the SRL with those of the airborne LASE.

LASE [2] is a differential absorption lidar based on a tunable Ti:sapphire laser operating at 5
Hz with output wavelength in the 815 nm region of the spectrum. Pulse output energy is 100m;.
During the Andros overflights, LASE was operated in simultaneous up-looking and down-looking
modes so that approximately 70% of the laser energy was directed downward. In addition, in order
to measure the complete range of wéter vapor present from the upper troposphere to the surface,
three water vapor absorption line pairs of varying absorption strength were cycled among dunng

flight. Thus, 6 separate laser pulses were required to cover all 3 line pairs.
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Figure 2. Comparison of water vapor mixing ratio measurements of the airborne LASE differential
absorption lidar and the ground-based SRL. Also shown is a radiosonde launched at 0022 UTC
which was approximately 30 minutes before the aircraft overflight. Both the LASE and the SRL

profiles use 3 minute averages.

The comparison of SRL and LASE water vapor measurements made during this overflight is
shown in figure 2. Also shown is a Vaisala RS-80H radiosonde measurement of water vapor which
occurred at 0022 UTC. The radiosonde launch occurred approximately 30 minutes prior to the

DC-8 overflight.

The three datasets show good general agreement except in the regions between 1-2 km and

between 5-8 km. Between 1-2 km the SRL and LASE indicate higher moisture levels than the
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radiosonde. Between 5-8 ki, the SRL and radiosonde agree well while LASE shows lower mois-
ture. Several factors must be considered in the comparison of these datasets, however. First, it
should be noted that a cloud was present at approximately 1 km during a portion of the 3 minute
LASE averaging period. This prevented LASE water vapor retrievals lower than 1 km. In addition,
during the three minute averaging period of the LASE data, the DC-8 travels approximately 30-40
km. This can result in both smoothing of features in the water vapor profile as well as changes in
those features. Finally, the vertical resolution of the instruments is very different. The resolution
of the LASE data is 330 meters between 0-2 km, 510 meters betWeen 2-6 km, and 990 meters
between 6-8 km. The SRI. data have 75 meter vertical resolution throughout the profile and the

radiosonde data are reported at SO meter resolution throughout the profile.
3.2.1 Water vapor signal tuning

The water vapor mixing ratio is calculated from the ratio of the Raman signals for water vapor
and nitrogen [13]. The model must therefore be able to accurately simulate lidar signals for these
molecular returns. The raw SRL water vapor and nitrogen data from the same overflight period
shown in figure 2 were used to tune the model to simulate SRL performance. These SRL data
were acquired using a 2 milliradian field of view on the SRL telescope. The model was first
used to calculate the overlap function using SRL system parameters. Then the model was used
to simulate high channel SRL water vapor and nitrogen signals using input profiles for both the
water vapor mixing ratio and the atmospheric density from the 0022 UTC radiosonde. (Using the
radiosonde data as input to the model instead of the lidar-derived water vapor mixing ratio allows

differences induced by random error to be more easily discerned since the radiosonde has similar
13
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Figure 3: Illustration of model tuning for the optical efficiency parameter. On the left is plotted the
simulated SRL water vapor signal for a range of optical efficiencies. On the right is plotted the ratio
of the model output to the SRL data (smoothed to 400m resolution for easier interpretation). Notice

that the curves are separated throughout the profile. The value of 4% gives the best agreement

between the data and the model.

noise characteristics through most of the troposphere while the noise in the lidar signal increases
with height.)

The process of tuning the model to predict SRL performance involves entering all the known
SRL parameters into the model and then varying the lidar system optical efficiency and sky back-
ground radiance so that the model output matches the actual profile. Tuning the model for optical
efficiency is illustrated in figure 3 using the SRL high channel water vapor profile.

The influence of changing the water vapor channel optical efficiency parameter is shown in

figure 3. The values of 3%, 4% and 5% were used to quantify the efficiency of the receiver optics
14



excluding the interference filter and the PMT quantum efficiency which were separately quantified
as 50% and 23%, respectively. In the left hand plot, the actual SRL water vapor signal is plotted
along with the three simulated signals all using 1-minute averages. Random error in the model
is simulated assuming Poisson statistics. The value of 4% most closely matches the actual SRL
data as can be seen in the plot on the right which shows the ratio of simulated and actual data.
The influences of the lidar system overlap function and photon counting saturation can be seen
in this ratio below an altitude of approximately 1 km. The curves in the plot on the right show a
relativel}; constant separation with altitude since the optical efficiency influences all parts of the
profile similarly.

Model tuning for the background radiance is shown in figure 4. The values of 0.2, 0.25, 0.3
X 107" W em~2 sr~1um™~" were used for background radiance. For all model profiles shown in
this figure, the lidar system efficiency used was 4%. In the lowest part of the profile, the curves
overlay each other almost exactly. This is due to the fact that at high signal strengths such as exist
for near range returns, the lidar signal is much larger than the nighttime sky background. At higher
altitudes, however, the curves are seen to separate as the influence of background light becomes
larger. The value of 0.25 x 107 W em~2 sr~1um ™! was chosen to best represent the background

radiance for this SRL profile.

3.2.2 Nitrogen signal

In a manner similar to the tuning just shown for water vapor, the model was tuned to simulate the
high SRL nitrogen channel optical efficiency. During this process, the background radiance was

kept the same as for the water vapor channel. Figure 5 shows the comparison of SRL high channel
15
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Figure 4: On the left is shown the result of using a 4% optical efficiency and changing the value of
background radiance in units of 1077 W cm~2 sr=! um 1. Here all curves converge in the lowest
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model to SRL has been smoothed to 400m for easier interpretation. The values of 0.25 x 10~ gives

the best agreement between the data and the model.
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Figure 5. Comparison of actual 1 minute SRL nitrogen channel data and the output of the Raman
model. The two curves agree very well up to an altitude of about 13 km where the SRL aerosol

channel shows the presence of a cirrus cloud that was not accounted for in the model.

nitrogen and aerosol data. All profiles use a 1 minute average.

The model and the SRL high channel nitrogen data (SRLN) agree very well up to an altitude
of about 13 km. At this point the two curves diverge. The simultaneously acquired SRL aerosol
data (SRLA) are plotted to show the presence of a cirrus cloud between 13-14 km. The actual SRL
nitrogen data show the influence of the additional extinction due to this cirrus cloud. The model
was not told of the presence of the cirrus cloud, however. The amount of separation of the model

and the SRLN curves above the height of the cirrus cloud can be used to quantify the optical depth
' 17
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Figure 6: Comparison of radiosonde water vapor profile and 1 minute water vapor mixing ratio as

predicted by the model. The model used 1 minute averaging and 75m vertical resolution.

of the cloud.

3.2.3 Model water vapor mixing ratio

Now that the simulated water vapor and nitrogen high channel signals are available, these simulated
data can be processed for water vapor mixing ratio in the same way as real data. These results are

shown in figure 6.

The agreement between the model and the radiosonde is excellerit above 2 km indicating that the
model has accurately reproduced the lidar signals corresponding to the high channel measurement

of water vapor mixing ratio. Below 2 km, the curves disagree because the high channel lidar
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signals are influenced by photon counting saturation in this part of the profile illustrating the need
for low channel detectors for ground based, photon counting measurements. The standard error in

the simulated water vapor mixing ratio as determined by Poisson statistics is also shown.

3.3 Case study 2: DOE/CART Raman lidar data (narrow field of view)

One of the techniques used for Raman lidar measurements in the daytime employs a narrow field
of view telescope and narrow bandpass filters. Both of these decrease the amount of background
light that gets to the detectors which allows the weak Raman signals to be measured even un-
der bright daytime conditions. The CART Raman lidar (CARL) uses this approach by operating
with a field of view of approximately 0.25 milliradians and by using interference filters which are
approximately 0.4 nm wide. To validate the model’s ability to simulate narrow field of view mea-
surements, data acquired by CARL on the night of September 27, 1997 were used. The model was
given a 10-minute average water vapor mixing ratio profile from the lidar (using both high and
low channels) as input along with number density from a radiosonde launched at the site on that
evening. Figure 7 shows the comparison of the model simulations of a 1-minute average of water
vapor and nitrogen data and the actual 1-minute water vapor and nitrogen data acquired by the
CARL high channels. The model agrees very well with the actual data even in the lowest portions

of the profile where the influence of the narrow telescope field of view is largest.

These simulated signals were then processed to yield water vapor mixing ratio. The fully pro-
cessed 1-minute model simulation of water vapor mixing ratio is shown in figure 8 along with the
actual 10-minute CARL measurement. The agreement is excellent above 3 km. Again, only the

high channels have been simulated here so that the disagreement below 3 km is due to photon
19
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Figure 7. Comparison of DOE/CART Raman lidar (CARL) high channel water vapor and nitrogen
signals and model simulations. CARL uses a narrow field of view detection technique to enhance

daytime measurements. The model is able to accurately simulate CARL narrow field performance.

count saturation.

3.3.1 Model tuning for daytime conditions

The model was next used to simulate the daytime performance of the CART Raman lidar. Fig-
ure 9 shows the results of the model tuning for daytime measurements acquired by CARL on
September 27, 1997 at 1500 UT. Again the agreement between the model and actual data is very
good. The background radiance required by the model to match the CARL data was 1.1 x 1072
W em™2sr™! pm~!. Modtran calculations using rural aerosol loading, standard atmospheric den-
sity and the known solar zenith angle of 60 degrees indicated a radiance of approximately 1.0 x

1

1072 W em™2sr~! um~" in good agreement with the model.

As an additional test of the model’s treatment of background radiances, CARL data acquired
20
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Figure 8: Comparison of a 10-minute nighttime water vapor mixing ratio measurement by the

DOE CART Raman lidar and model predictions of the CART system for a 1-minute measurement

period. The agreement is excellent above 3 km. Below 3 km, the model simulation is influenced

by the lidar overlap function and photon count saturation.
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with the highest sun angle on this day (38 degrees) were also simulated. For these data, the Raman
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two examples indicate that the model is accurately assimilating real sky radiances.

Using the same atmospheric conditions as in figure 9, a 10-minute simulation of water vapor
mixing ratio was generated and compared with actual measurements. This is shown in figure 10.
The CARL water vapor mixing ratio profile shown in the figure was used as input to the model for

these simulations. The agreement is very good above 2.5 km where the high channels are used.

Note that the error is plotted multiplied by 10 for easier viewing.

4 Airborne Simulations
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4.1 Lamont, Oklahoma - September 27, 1997

4.1.1 nighttime conditions

The model has been used to accurately simulate water vapor measurements of two ground-based
Raman lidar systems. At this point, the model will be used to simulate the performance of a Raman
lidar system from an airborne platform. The parameters for the airborne system are shown in table
1. These parameters are the same as for the ground-based CARL lidar except for two modifications:
the neutral density filters have been removed from the water vapor and nitrogen channels and the
laser power has been increased to 15W. Due to the signal compression that occurs when measuring
downward from an airborne platform, the dynamic range of the signal is greatly reduced and these
neutral density filters are not needed as will be demonstrated later. The parameters of the modeled

system are shown in Table 1.

Using the same input parameters as in the simulation shown in figure 8, water vapor and nitrogen
signals were modeled for the airborne lidar and are shown in figure 11. A 15-second average was
used. The signals have been converted to count rate. Several points can be made here. The
advantages of measuring downward toward the surface using lidar is clear. All lidar systems are
influenced by the inverse range squared decrease in the signal intensity with range. The advantage
of making measurements downward from an airborne platform is that most species of interest (e.g.
water vapor, nitrogen and aerosols) have higher concentrations nearer to the surface. This results

in a compression of the dynamic range of the signal which has many advantages.

The lower 8 km of the airborne water vapor and nitrogen signals are both contained within
24
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Figure 11: Model water vapor and nitrogen signals for the described airborne Raman lidar at a
flight altitude of 10 km. The data have been converted to count rate (Hz). Both water vapor and

nitrogen signals show significant dynamic range compression when compared with figure 7.



approximately 1 decade of dynamic range. This is compared with the nearly 4 decades (2 decades)
of dynamic range required to make the water vapor (nitrogen) measurement from the ground as
was shown in figure 7. Because of this dynamic range compression for an airborne lidar, it is
possible to measure the entire range of the lidar signal shown using a single detector. In addition,
one would expect much better detector linearity and less susceptibility to such effects as signal
induced noise when operating from the air due to this compression. Also, since the maximum
count rates observed are approximately 50 Mhz, it would not be necessary to use any additional
neutral density filtering to make these measurement trom the air (a combination of photon counting
and analog detection would be useful for a 50 Mhz signal to avoid the pulse pileup correction).
These simulated signals have been analyzed for water vapor mixing ratio. The results are plotted

in figure 12.

Along with the 15-second averaging time, vertical smoothing of 200 meters between 0 - 6 km,
120 m between 6 - 8 km and 40 m between 8 - 10 km has been used in the model. The random
error in the model is shown multiplied by a factor of 10 for easier viewing. The random error is
approximately 10% in the dry region between 3-5 km but drops to between 5-7% in the region near
the surface. This figure illustrates an additional important advantage of operating a Raman lidar
from the air. Due to the increase in signal strength at the farthest range in the profile, high quality
measurements of water vapor mixing ratio are possible in a fraction of the time required by the

same ground based system.

4.1.2 daytime conditions

Since there was good agreement between the background radiances required as input to the Raman
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Figure 12;: Simulation of the airborne Raman lidar at a flight altitude of 10 km. A 15 second
averaging time is used. The profile has been smoothed as follows: 0 - 6 km: 200m, 6 - 8 km:
120m, 8 - 10 km: 40m. The model error is plotted multiplied by 10 for easier viewing. The

random error is approximately 5-7% near the surface.
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model in order to match actual upward-looking lidar data and thosc predicted by Modtran, Modtran
was again used to predict the background radiance expected under a range of downward-looking

conditions. Figure 13 shows the results of these Modtran runs.

Ocean, grass and fresh snow surfaces were simulated. The radiance is calculated for a range
of solar zenith angles ranging from 0-75 degrees. As mentioned before, the value of radiance
required to match the up-looking daytime CARL data acquired with a solar zenith angle of 38
degrees was 1.5 x 1072 W cin~2sr~! um™!. Under these conditions the Modtran prediction was
1.7x 1072 W em 2sr~! wn~ . Figure 13 illustrates that these upward-looking radiance values
are equal to or larger than the largest down-looking radiances for any solar zenith angle over either
an ocean or grass surface. This demonstrates another advantage of operating a Raman lidar from
an aircraft versus the ground. Under many conditions, the background radiance levels are lower
looking downward than they are looking upward making it easier to measure the weak Raman

signals under daytime conditions.

To simulate the performance of the airborne Raman lidar under daytime conditions at the DOE
CART site a value of background radiance of 1.3 x 1072 W ¢ 2sr™! pwm~! was used. This
value is consistent with a grass surface and a solar zenith angle of approximately 30 degrees. All
other parameters were the same as for the nighttime retrievals shown in figure 12 except that the

averaging time was increased to 3 minutes. The results are shown in figure 14.

The figure shows the comparison between the 10-minute grotind-based CARL measurement
(nighttime profile) and the simulated airborne Raman measurements for the water vapor conditions

of September 27, 1997 at the northern Oklahoma CART site. A threc minute averaging time has
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Figure 13: Radiances looking downward from 10 km for a range of solar zenith angles and for
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Figure 14: Simulated airborne retrievals from a flight altitude of 10 km for daytime conditions.

The background radiance used was for 38 degree solar zenith angle over a grass surface which

simulates the measurement conditions at the time of highest sun angle on September 27, 1997 in

northern Oklahoma.
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been used in the model and the profile has been smoothed to 350 meters between 0-3 km, 520
meters between 3-8 km and 40 meters between 8-10 km. The random error near the surface is
between 5-7% as in the nighttime case, however the random error in the dry region between 3-5
km, where the mixing ratio values range between 0.3 - 1.2 g/kg, has increased to approximately

20%.

4.2 Andros Island, Bahamas - August 22, 1998
4.2.1 nighttime

The performance of the airborne Raman lidar can now be assessed for the same measurement
conditions under which the measurements in figure 2 were made. Figure 15 shows the simulated
performance of the airborne Raman lidar under the nighttime conditions that existed during these

measurements.

The airborne Raman lidar simulation is for a measurement time ot 10 seconds and uses vertical
smoothing as follows: 0 - 4 km : 200 meters, 4 - 7 km: 120 meters, 7-10 km : 40 meters. The
random error in the retrieval is less than 10% up to 9 km and closer to 5% in the very moist region

near the surface.

4.2.2 daytime

In order to simulate daytime measurement conditions in the Bahamas, the background radiance
chosen was that for a O degree solar zenith angle over the ocean. The Modtran radiance for these

conditions when down-looking from 10 km was 0.75 x 1072 W ¢ 2sr~! um~1. All other param-
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Figure 15:
ditions as those shown in figure 2(Andros Island, Bahamas). The averaging
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Simulated measurements of the airborne Raman lidar using the same atmospheric con-

time is 10 seconds and

120 meters, 7 - 10 km : 40
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Figure 16: Simulated airborne Raman lidar measurements from an altitude of 10 km with back-
ground radiance equivalent to a 0 degree solar zenith angle over an vcean surface. The averaging

time used was 3 minutes and the vertical smoothing is 0-9 km : 200 meters and 40 meters above.

eters were kept the same as in figure 15 except that the averaging time was increased to 3 minutes.

The results are shown in figure 16.

The modeled Raman water vapor mixing ratio profile was smoothed to 200 meter vertical res-
olution between the surface and 9 km. The modeled error is generally less than 5% except in the
region between 5 -6 km where it is closer to 7%. In the lowest 2 km of the profile, the error is

3-4%.
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Figure 17. Modeled performance of the airborne Raman lidar system for simulated arctic condi-
tions. Nighttime measurement performance using a 3 minute average is shown on the left and

daytime performance using a 10 minute average is on the right.

4.3 Arctic conditions

To investigate the performance of this airborne Raman lidar over the widest range of conditions,
arctic water vapor concentrations were simulated by using the upper portion of the August 22,
1998 Andros Island radiosonde. The model used the radiosonde water vapor values above 8 km
as representative of an arctic profile beginning at the surface. The values in this simulated pro-
file range from approximately 1.0 g/kg at the surface to values of 0.002 - 0.004 g/kg between 8
and 10 km. These values agree well with values reported recently (December, 1999) from the
SOLVE (SAGE-III Ozone Loss and Validation Experiment) airborne measurement campaign held
in Northern Sweden (Dr. Richard Ferrare, personal communication, January, 2000). The simulated

nighttime and daytime performance is shown in figure 17.
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The nighttime simulation used a 3 minute averaze and vertical simoothing of 450 m from the
surface to 5 km and 7350 meters above 5 km. Random error throughout the profile is less than 10%
with the error near the surtace being approximately 3%. For the dayviime simulation, a 10 minute
average has been used and the background radiance was that for a snow surface at a 40 degree solar
zenith angle. The profile was smoothed to 1.05 km throughout the profile. Under these conditions
the errors exceed 100% for all altitudes above 3 km. However, at the surface the error is less than

20%.

S Aircraft Survey

Several aircraft have been investigated as possible platforms for testing an airborne Raman lidar of
the specifications modeled here. Those aircraft are the NASA DC-8, 3 and C130 and a Northrup-
Grumman 737. Both the NASA DC-8 stationed at Dryden Research Facility and the Northrup-
Grumman 737 stationed at Baltimore Washington International airport are able to carry research
payloads to altitudes of 10 km. The DC-8 has two viewports which measure 0.76 x 0.94 m. These
are much more than adequate to accommodate the 0.6 m aperture of the modeled system. However,
these viewports are located in the fore and aft cargo compartments where thermal variations can
be expected during flight. Viewports as large as 0.4 m exist in the thermally controlled portion of

the aircraft.

The Northrup-Grumman 737 has a window that measures 0.51 x 0.61 m and can thus accom-
modate most of the clear aperture of the modeled system. This window is in a thermally controlled

part of the aircraft.
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Figure 18: Model comparisons of a down-looking airborne Raman lidar using a 0.4 m telescope

for the Andros Island case. The nighttime simulation uses a 20 second average while the daytime

simulation uses a 3 minute average.

The P3 and C130 both have available apertures to accommodate the modeled telescope. The
maximum flight altitude of these aircraft is approximately 8 km., however. All aircraft can provide

sufficient power for the airborne Raman lidar system modeled.

S.1 Simulations using a 0.4 m telescope

In the passenger cabin of the DC-8, both down-looking and up-looking viewports with 0.4 m
aperture are available To investigate the possibility of flying in this part of the DC-8, simulations
were done using a 0.4 m telescope for the modeled svstem with all other parameters remaining the
same. The model results for the case of the August 22, 1998 conditions at Andros Island are shown

in figure 18 for both nighttime and daytime conditions.

The nighttime simulation on the left uses an averagzing time of 20 scconds with vertical smooth-
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ing as follows: 0-6kim: 200m, 6-8 km: 120m, 8-10km: 40m. The random error is again below 10%
for the entire profile with values in the range of 5% near the surface. For the daytime simulation
on the right, a 3 minute averagze has been used. The profile has been smoothed as follows: 0-5 km:
360m, 5-7 km: 200 m, 7-10 km : 40 m. Again the profile shows very good error statistics with

error values everywhere below 10% and below 5% near the surface.

5.2 Upward looking simulations

An upward looking viewport accommodating a 0.4 m aperture telescope is available on the DC-8
aircraft. Therefore, it is interesting to simulate the nighttime performance of a 0.4m telescope based
system for up-looking measurements from 10 km. To do this, the August 22, 1998 radiosonde
water vapor profile from Andros Island, Bahamas was used as an input to the model. The same
background radiance (0.25 x 1077 W c¢m~2sr~! s 1) used for the ground-based case shown in
figure 6 was used here as well although it is reasonable to expect that the nighttime sky radiances
would be lower looking upward from 10 km. The model used a field of view of 0.5 milliradians to

decrease the influence of the overlap function. The results are shown in figure 19.

In these simulations, a 10-minute average has been used and the final water vapor profile has
been smoothed to 1.05 km. The influence of the overlap function on the model simulations is
evident up to an altitude of approximately 11.5 km. However, above this altitude, the agreement
is very good. Also, despite the very small water vapor concentrations, the random error of the
measurement is below 10% up to an altitude of 14 km where the water vapor mixing ratio is

approximately 0.01 g/kg.
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Figure 19: Simulation of the water vapor measurement performance of a 0.4 m aperture Raman
lidar system looking upward from a 10 km flight altitude. A 10 minute average has been used

along with 1.05 km vertical smoothing.
6 Summary and Discussion

The NASA/GSFC Raman lidar group has been funded through the NASA Instrument Incubator
Program to construct an airborne Raman lidar. A Raman lidar numerical model has been con-
structed as a part of this effort. Model predictions have been tuned to best simulate the water vapor
measurements of two ground-based lidar systems using both nighttime and daytime data. These
comparisons show very good agreement. The sky radiances derived in this process agree well with
Modtran. After tuning the model with ground-based data, measurement simulations of a candidate
airborne Raman lidar system were performed for both daytime and nighttime conditions for several

test cases covering a wide range of water vapor concentrations.

The cases studied include downward looking measurements from a 10-km flight altitude during
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both the nighttime and the duytime for three sets of conditions: 1) Scptember, 1997 at the DOE
CART site in northern Oklahoma, 2) August, 1998 at Andros Island, Bahamas, and 3) simulated
arctic conditions during December. For the first two cases, the simulations presented here indicate
that the airborne Raman systen can provide daytime water vapor measurements under these con-
ditions that are generally comparable to the measurements provided by the differential absorption
LASE instrument. This conclusion is based on the LASE measurement capability demonstrated
on August 22, 1998 during CAMEX-3. For nighttime measurements under these conditions, the
airborne Raman system offers higher vertical and temporal resolution. For the simulated arctic
conditions, measurements in 3 minutes with less than 10% error are possible under nighttime
conditions. Under daytime conditions in the arctic using a 10 minute average, the high solar back-
ground produces very large errors except near the surface where the random error is approximately
20%. By tuning to a strong absorption line, a differential absorption system such as LASE would

likely be capable of improved measurements under these dry daytime arctic conditions.

Also studied was the anticipated performance of an upward looking airborne Raman lidar. These
simulations indicated that, from a 10 km flight altitude with a 10 minute average and using 1 km

vertical smoothing, profiles with 10% random error are possible up to 14 km.

These results demonstrate that there are significant advantages to operating a Raman lidar look-
ing down from an aircraft versus looking up from the ground. Based on ground-based CART
Raman lidar nighttime measurements studied in the first case, the dynamic range of the water va-
por signal covered approximately 4 orders of magnitude from the surface up to 8 km. The model

simulations indicate that this same water vapor profile when measured from an aircraft would cover
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approximately 1 order of magnitude of dynamic range. Significant dyvnamic range compression ex-
ists for the nitrogen signal as well. This mcans that a single detector channel can be used from an
airborne platform to measure cither the water vapor or nitrogen profile from near the flight altitude
of 10 km to the surface. This can be compared to the two channels that are required to make the
same measurement using a ¢round-based Raman lidar system. Dynamic range compression also
implies that shorter averaging times are required to produce good quality signals throughout the
profile. Since the concentrations of both water vapor and nitrogen tvpically increase from 10 km
toward the surface, the inverse range squared decrease in the lidar signal intensity is compensated
for by the increased concentration of scatterers near the ground. This allows low random error

profiles to be acquired in as little as 10 seconds.

The Raman technique has the further advantage that numerous additional measurements can be
made with the same system while it is also measuring water vapor mixing ratio. These measure-
ments include aerosol scattering ratio/extinction/depolarization and cloud properties such as liquid
water, droplet radius and number density [15]. These measurements are very difficult or impossi-
ble with a differential absorption lidar system. For example, aerosol scattering ratio can be calcu-
lated directly with a Raman system without resorting to a radiosonde measurement of density or a
model atmosphere. Aerosol extinction calculations are also possible with many fewer assumptions
using a Raman lidar than with a differential absorption lidar. By including the recently demon-
strated capability to retrieve cloud droplet radius and number density using the Raman technique,
a measurement not possible with differential absorption lidar, an extremely powerful airborne lidar

system is possible.
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9 Figures

1) Comparison of the overlap tunction for a 0.6 m I/4 telescope using the ZeMax optical ray trace
program and the Raman lidar model for diffrerent telescope focus settings: 1 km, 2 km, 5 km and
infinity. The two sets of overlap functions show good qualitative agreement.

2) Comparison of water vapor mixing ratio measurements of the airborne LASE differential ab-
sorption lidar and the ground-based SRL. Also shown is a radiosonde launched at 0022 UTC which
was approximately 30 minutes before the aircraft overflight. Both the LASE and the SRL profiles
use 3 minute averages.

3) Illustration of model tuning for the optical efficiency parameter. On the left is plotted the simu-
lated SRL water vapor signal for a range of optical efficiencies. On the right is plotted the ratio of
the model output to the SRL data (smoothed to 400m resolution for easier interpretation). Notice
that the curves are separated throughout the profile. The value of 4% gives the best agreement
between the data and the model.

4) On the left is shown the result of using a 4% optical efficiency and changing the value of
background radiance in units of 10-7 W ecm~2 sr™! pm ™!, Here all curves converge in the lowest
part of the profile where the background light level has essentially no influence. The ratio of the
model to SRL has been smoothed to 400m for easier interpretation. The value of 0.25 x 10~ "gives
the best agreement between the data and the model.

5) Comparison of actual 1 minute SRL nitrogen channel data and the output of the Raman model.
The two curves agree very well up to an altitude of about 13 km where the SRL aerosol channel

shows the presence of a cirrus cloud that was not accounted for in the model.
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6) Comparison of radiosande water vapor profile and | minute water vapor mixing ratio as pre-

dicted by the model. The model used 1 minute averaging and 75m vertical resolution.

7) Comparison of DOE/CART Raman lidar (CARL) high channel water vapor and nitrogen signals
and model simulations. CARL uses a narrow field of view detection technique to enhance daytime

measurements. The model is able to accurately simulate CARL narrow field performance.

8) Comparison of a 10-minute nighttime water vapor mixing ratio measurement by the DOE CART
Raman lidar and model predictions of the CART system for a 1-minute measurement period. The
agreement is excellent above 3 km. Below 3 km, the model simulation is influenced by the lidar

overlap function and photon count saturation.

9) Comparison of model output and actual CARL measurements during the daytime on September
27, 1997. The solar zenith wus 60 degrees.

10) Comparison of daytime water vapor mixing ratio derived from simulated signals generated by
the model and the actual CARL measurements made at 1500 UTC on September 27, 1997. Only

the high data channels have been simulated so the curves agree well only above 2.5 km.

11) Model water vapor and nitrogen signals for the described airborne Raman lidar at a flight
altitude of 10 km. The data have been converted to count rate (Hz). Both water vapor and nitrogen

signals show significant dynamic range compression when compared with figure 7.

12) Simulation of the airborne Raman lidar at a flight altitude of 10 km. A 15 second averaging
time is used. The profile has been smoothed as follows: 0 - 6 km: 200m, 6 - 8 km: 120m, 8 -
10 km: 40m. The model error is plotted multiplied by 10 for easier viewing. The random error is

approximately 5-7% near the surface.
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13) Radiances looking downward from 10 km for a range of solar zenith angles and for three
surfaces: ocean, grass and tresh snow. The value of radiance required to match the uplooking
daytime measurements (1.5 x 1072 W an” ?sr~! s ') isaslarge or larger than any downlooking
radiance over ocean or grass surfaces.

14) Simulated airborne retricvals from a flight altitude of 10 km for daytime conditions. The
background radiance used was for 38 degree solar zenith angle over a grass surface which simulates
the measurement conditions at the time of highest sun angle on September 27, 1997 in northern
Oklahoma.

15) Simulated measurements of the airborne Raman lidar using the same atmospheric conditions
as those shown in figure 2(Andros Island, Bahamas). The averaging time is 10 seconds and the
vertical resolution is as follows: 0-4 km : 200 meters, 4-7 km : 120 meters, 7 - 10 km : 40 meters.
16) Simulated airborne Ramuan lidar measurements from an altitude of 10 km with background
radiance equivalent to a O degree solar zenith angle over an ocean surface. The averaging time
used was 3 minutes and the vertical smoothing is 0-9 km : 200 meters and 40 meters above.

17) Modeled performance of the airborne Raman lidar system for simulated arctic conditions.
Nighttime measurement performance using a 3 minute average is shown on the left and daytime
performance using a 10 minute average is on the right.

18) Model comparisons of a down-looking airborne Raman lidar using a 0.4 m telescope for the
Andros Island case. The nighttime simulation uses a 20 second average while the daytime simula-

tion uses a 3 minute average.

19) Simulation of the water vapor measurement performance of a 0.4 m aperture Raman lidar
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system looking upward from a 10 km flight altitude. A 10 minute average has been used along

with 1.05 km vertical smoothing.
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Modeled Airborme Raman Lidar System Specifications

Telescope F/9, 0.6 m Cassegrain with 0.15 m secondary

Laser : 50 Hz, 300 mj/pulse tripled Nd: YAG, beam expanded to 80 mm
Filter bandwidth 0.3 nm

Filter transmission 0.5

PMT quantum efficiency 0.23

Total water vapor channcl efficiency 1.2%
Total nitrogen channel efficicncy 0.6%
Data acquisition Photon counting at 230 Mhz bandwidth
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